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Alhazen’s billiard problem, first posed in 150 BC, starts with a given circle
and two points A and B inside. We then try to construct an inscribed, isosceles
triangle with A on one leg and B on the other using compass and straightedge.
The billiard aspect comes from imagining a round billiard table with two points
marked on the felt. Setting up a three-cushion shot which passes through the
two points and stops where it started turns out to be the same as solving the
Euclidean problem. Until Riede in 1989, various mathematicians attempted the
general construction but only obtained constructions for specific locations of the
given points. Riede proved that the general construction could not be obtained.
His proof puts Alhazen’s billiard problem in the non-constructible category with
cube roots, angle trisection and other mathematical quantities unreachable with
compass and unmarked straightedge.

In this paper, we consider the hyperbolic version of Alhazen’s billiard prob-
lem and show that the hyperbolic situation matches the Euclidean. For the
hyperbolic version, we have the same given: two points A and B inside a given
circle. We will use the Poincaré disk model of hyperbolic geometry, where hy-
perbolic lines are diameters of the disk and arcs of circles orthogonal to the
disk’s boundary. A satisfactory isosceles triangle would have its sides on such
lines, with its vertices on the given circle and with A and B on the legs. We
will see that the hyperbolic and Euclidean solutions correspond. Since hyper-
bolic triangles can have angle sums between 0 and 7, this correspondence was
unexpected.

1 Euclidean example

An obvious construction exists for A and B on a diameter of the given circle and
equidistant from the center, our first figure. We can construct the perpendicular
bisector of AB, which intersects the given circle at two points, each a potential
vertex of the desired isosceles triangle. We can also prove that these two triangles
are the only two non-degenerate solutions. First, we place a point V' on the given
circle and construct the legs of a potentially isosceles triangle through A and
B. Now consider the difference of the squares of the lengths of these potential
legs as a function of V. We can make this function explicit using the Law of
Cosines.



VU2 - VW2 =72 +7%2 - 2r2cos VOU — (r?> + 1% — 2r2 cos VOW)
VU? — VW2 = 2r2(cos VOW — cos VOU)

Figure 1. Two solutions from this A and B.

Since cosine is a strictly decreasing function on the interval of our angle
sizes, the difference cos VOW — cos VOU = 0 only at the points emphasized
with large dots in Figure 1. Only the two points on the perpendicular bisector
of AB give non-degenerate solutions. We include such a simple case because
its corresponding hyperbolic case will illustrate our bijection between Euclidean
and hyperbolic cases later.

1.0.1 Alhazen’s Billiard Problem in Hyperbolic Geometry

Hyperbolic geometry has several models; we will use the Poincaré disk and the
Klein model. The Poincaré disk is a hyperbolic space made of the Euclidean
points inside, not including, a fixed boundary circle. Euclidean diameters and
arcs of circles orthogonal to the boundary circle are hyperbolic lines. Hyper-
bolic distance cannot be discerned from appearances in the model because the
hyperbolic distance formula gives different sizes for segments which look the
same in Euclidean size, depending on their proximity to the boundary. One
consequence of the hyperbolic distance formula is that a circle in the disk has
a Euclidean center and a hyperbolic center which are the same only when the
circle’s Euclidean center coincides with the center of the boundary circle, called
O. Another property which surprises people in their first visit to the Poincaré
disk is that the angle sums of triangles lie between 0 and 7. The Klein model
also uses a disk for the boundary. The hyperbolic lines are Euclidean chords. In
this model, Euclidean appearances are even more deceiving because hyperbolic




angle sizes are not the Euclidean sizes visible in the model. The Poincaré disk
has its angle size visible, using tangents at the vertex of the angle. Both mod-
els allow infinitely many intersecting hyperbolic lines parallel to a given line.
There exists an isomorphism between these two models, called stereographic
projection, which, by coincidence, fits our Alhazen problem.

The Alhazen billiard problem in the hyperbolic disk model has more given
than the Euclidean version because we have the disk, with the given circle
inside the disk. The given circle has a Euclidean center E, the one we would
use to draw the circle with a compass. The given circle also has a hyperbolic
center H, the point which is hyperbolic equidistant from the points on the
circle. When FE is not O, then H ends up closer to the boundary than E, on
the Euclidean ray OFE. (We can construct H by constructing a hyperbolic line
perpendicular to both the boundary and the given circle.) Figure 2 summarizes
the properties of the hyperbolic situation. For points A and B conveniently
placed, the construction is possible. (Our bijection will define what we mean by
"convenient.") As a quick look at the hyperbolic version, the given points have
been placed hyperbolic equidistant from O—I){ and chosen so that the base of the
constructed triangle contains H. The triangle JK L illustrates one easy way to
get congruent legs: the hyperbolic altitude, HL, to the base is also a median.

Figure 2. A hyperbolic Alhazen triangle.



2 Non-constructibility

Theorem There exists a bijection between constructible Fuclidean Alhazen tri-
angles and constructible hyperbolic Alhazen triangles, as well as a bijection be-
tween the non-constructible cases.
Proof. Suppose we can construct any of the hyperbolic isosceles triangles
whose legs contain A and B. Construction of the translation of the given circle
to the center O is always possible [3]. One way to see this is, the distances
AH, BH, length of the radius of the given circle and the angle AHB may all be
copied with compass and straightedge with O taking the place of H. When the
given circle and its points have been translated to the center of the disk, the
hyperbolic and Euclidean centers become the point O and any arcs through H
become Euclidean straight. Without loss of generalization, we can consider our
given circle centered at O from the start.

Besides being easier to see and construct, our given is now easily transformed
through stereographic projection to the Klein model of hyperbolic geometry.

. )

Figure 3. Stereographic projection of a hyperbolic line in both models.

The projection starts with a sphere placed on the hyperbolic disk, tangent at
O, the center of the disk. Euclidean segments connecting the top point of this




sphere to the points of a hyperbolic line in the Poincaré model pass through
the sphere itself. When we project the intersection points straight down, we
get Euclidean segments, the chords of the Klein model. Stereographic projec-
tion sends circles to circles and preserves congruence and incidence [4]. The
legs of the constructed hyperbolic isosceles triangle of the Poincaré disk become
Euclidean segments in this model. The given circle transforms to a circle. The
projection can be accomplished with compass and straightedge because the ver-
tices of the Poincaré disk triangle remain on the given circle, so we can join them
with our ruler to get the Klein model triangle. Then the Euclidean rays OA

and O—]>3 intersect the Euclidean segments at A’ and B’, the Euclidean points
on the legs.

Now, when we look at this twice-transformed picture without the hyperbolic
interpretation, we see an isosceles triangle with the transformed images of points
A and B, one on each leg. In other words, our hyperbolic construction yields
a Euclidean construction for an Alhazen solution. The process is reversible
because translation and stereographic projection are bijections. If we could find
any hyperbolic construction, we could then find any Euclidean construction.
But the Euclidean solution is, in general, unobtainable. Therefore our initial
supposition cannot be true. ([l

Two examples will illustrate our theorem. First, we recall Figure 1. Our
bijection says exactly two non-degenerate triangles must be constructible in
hyperbolic geometry. We will start with the given circle centered at O. As
before, we place a point V on the given circle and construct the segments VIV
and VU. Figure 4 illustrates our situation (we have hidden the diameter through
A and B for clarity.) The hyperbolic Law of Cosines applies, where r is a radius
of the given circle. We get the same conclusion as the Euclidean version: two
triangles constructible for the given A and B, and no others possible.

cosh VU — cosh VW = cosh? r — sinh?  cos VOU — (cosh? r — sinh? r cos VOW)
cosh VU — cosh VW = sinh® r(cos VOW — cos VOU)

Figure 4. Hyperbolic version of
Figure 1.



Figures 1 and 4 illustrate a detail from Alhazen’s history. Dorrie’s concise
presentation [2] gives an analytic proof for there being as many as four Alhazen
triangles possible, depending on the placement of the given points A and B.
Our bijection said there would be exactly two constructible hyperbolic triangles
from this special position of A and B because the Euclidean case had two. We
constructed the hyperbolic triangle (the second triangle uses the vertex on the
other side of the given circle, just like the Euclidean case.) The hyperbolic Law
of Cosines verified that our two triangles were the only two.

In Figure 2, where the base of the hyperbolic triangle passed through the
hyperbolic center of the given circle, we can show how such triangles turn out
after the bijection. The base remains a diameter, but also looks Euclidean
straight when translated to the center. We finish the bijection as pictured in
Figure 5. Our disk boundary and given circle remain circles. Our Euclidean
diameter, which is also the base of our triangle, remains visibly unchanged as
well. However, the legs of our triangle go from hyperbolic lines to Euclidean
segments as if the end points of the hyperbolic lines were connected with a
straightedge. Lastly, we need to transform our image from the Poincaré model
to the Klein model by simply removing the disk boundary from the picture.
Since stereographic projection preserves incidence and congruence, our image
triangle is an isosceles Euclidean triangle with its two legs passing through points
A’ and B'.

.

Figure 5. Last step of bijection.

In summary, regarding the hyperbolic Alhazen problem, we are in the same
situation as the Fuclidean plane: unless we have special information about the
locations of A and B, we do not have a construction for an inscribed isosceles



triangle. If the Alhazen given information allows a construction in one geometry,
there is a corresponding constructible case in the other geometry. Likewise for
the non-constructible cases.
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